What do Rubber, Morphine, Purple Dye, and Nylon all have in common?

This week I wanted to share my book that I read for our book talk papers.  Although the book is on the longer side I really enjoyed that it didn’t require me to read it all in a short period of time (so that I wouldn’t forget the plot).  Each chapter could stand on its own and that made every time I picked up the book feel like a totally new experience.  It’s thorough and interweaving historical accounts of chemistry provided me with a ton of valuable insight into how far chemistry has come since the beginning of modern science.  I don’t want to give away too much more though, so that my presentation isn’t totally ruined before I even start it!


Book: Napoleon’s Buttons: 17 Molecules that Changed History

Authors: Penny Le Couteur and Jay Burreson

Big Idea: Science is tentative, messy, and unexpected.

In Napoleon’s Buttons: 17 Molecules That Changed History by Penny Le Couteur and Jay Burreson, a central idea of the Nature of Science, namely the fact that science is tentative and ever changing is pervasive. The book discusses seventeen molecules that, in the authors’ opinions, changed the path of history significantly with their identification and induction into society. As more molecules are discussed in the book, more overlaps between the molecules become evident. Ties between quinine and picric acid and aspirin, for example, are laced throughout all three of the chapters, which speak directly about those compounds. Furthermore, because many of these compounds were discovered, isolated, and synthesized within a similar range of dates their overlaps must go beyond even the scope of this book.

While there are many similarities between a large number of the compounds on which Napoleon’s Buttons focuses, the book pays special attention to the struggles and obstacles that scientists encountered while trying to isolate, determine the structure of, and stereo-selectively synthesize the molecules in question. This point is one that I think is significant for my future students, and would provide real-life Nature of Science into my future classroom. These struggles highlight the facts that science is messy, and indeed even some of the molecules spoken about in this book were discovered accidentally, while a researcher was looking for an entirely different compound, or even as a result of tiny differences in molecules’ structures.

In addition, significant time is spent in the book discussing how the development and use of some of these “miracle” compounds turned out to be “nightmare” compounds. For example, at the time of DDT’s (dichloro-diphenyl-trichloroethane) initial use for eradicating malaria and slowing the spread of typhus it seemed to be a positive, life changing molecule; but, DDT ended up having serious environmental impacts despite its efficiency at doing its main job and whose use has since been significantly reduced.

Overall, Napoleon’s Buttons speaks directly to the Nature of Science in a multitude of ways including its messiness and tentative natures. By reading even only individual chapters of this book my future students would get valuable insight into how sloppy, unexpected, and uncertain science can be. The connections between chapters, and thus reading the entire book, would provide students with an insiders’ look into science research and discovery; which would really uncover the collaborative and mysterious underpinnings of the development of our society, through the lens of science. In my own classroom, I could use this book in segments or as a whole, for the end results I stated prior, but could focus on the connections between seemingly unique compounds. Given the time to do so, a concept map of significant words in Napoleon’s Buttons would be cognitively challenging and profound for students to create, either for individual chapters or for the book as a whole, for which students could be responsible for individual chapters. For this task, the words in the concept map would go beyond just the compound names, by also include locations, dates, routes to discovery, origins, and so on. Through this exercise the interconnectedness of all corners of our current society could be made visible for learners.

This book is one that I would recommend to science geeks, learners, and all people in between in addition to anyone with an interest in history and the progression of modern advancements. In all, Napoleon’s Buttons is a book that can be enjoyed in single chapter segments or as a whole, but either way gives an insightful and descriptive account on seventeen history-changing molecules, many of which are very unexpected choices.



Le Couteur, P., Burreson, J. (2003). Napoleon’s buttons: 17 molecules that changed history. New York, NY: Penguin Group.

2 responses to “What do Rubber, Morphine, Purple Dye, and Nylon all have in common?

  1. I might read it…….in my free time!

  2. “Science is tentative, messy, and unexpected.” And it is also fun to read about. This book was chocked full of interesting things to think about, namely the Nature of Science!

Leave a Reply

Your email address will not be published. Required fields are marked *